
Chapter 2 exercises

1. The arguments of the function

int main(int argc,char* argv[])

for a console application give the number of command line arguments with
which the console application was invoked (argc) and an array of pointers
to C–style strings containing those command line arguments (argv). Thus,
if the console application is called my program, invoking

my program test 123 3.14

will result in

argc ⇐= 4

argv[0] ⇐= "my program"

argv[1] ⇐= "test"

argv[2] ⇐= "123"

argv[3] ⇐= "3.14"

(a) Write a console application which calculates the factorial of an integer
passed as a command line argument.

(b) Write a console application which calculates the square root of a dec-
imal (floating point) number passed as a command line argument.

2. Using the “shapes” class hierarchy from Exercise 7 in Chapter 1, populate
a std::list of shapes with different instances of shapes. Calculate the
sum of the areas of all shapes.

3. Add another type of shape to the class hierarchy of shapes used in Exercise
2. Does the code you created for Exercise 2 still work when you include
this new shape in your std::list?

4. The Black/Scholes call option pricing formula is

C = SN(d1)−Ke−rTN(d2)

with

d1,2 =
ln S

K
+ (r ± 1

2
σ2)T

σ
√
T

where S is the initial stock price, K is the strike, T is the time to maturity,
r is the riskfree interest rate, σ is the volatility and N is the cumulative
distribution function of the standard normal distribution.

1



(a) Implement this in C++.

(b) Using the Rootsearch template from Section 2.5.1, implement a func-
tion which calculates the implied volatility of an option, i.e. the σ such
that given all other parameters, the Black/Scholes price of the option
matches a given market price.

5. The library code accompanying the textbook includes the CSV2Array()

template function, which uses the Boost library to parse a CSV file into
a Blitz Array. This is a convenient way of reading numerical data, but
also passing a large number of named parameters to a program. The C++

source file CSV2ArrayExample.cpp on the website illustrates this. Modify
your code from Exercise 4 to accept the required inputs via a CSV file of
named parameters.

2


