Chapter 5 exercises

1. Implement code to price, in each of the three finite difference schemes discussed in this chapter, a European and an American option with the payoff at exercise time t of

$$\max(0, K - S(t)^{\alpha})$$

for an underlying asset S(t), strike K and $\alpha > 0$. Compare the results, in particular in terms of convergence, with the results of Exercise 1 in Chapter 3.

- 2. Adapt the finite difference scheme implementations in this chapter to price simultaneously several contingent payoffs in a single roll—back operation on the lattice.
- 3. Suppose two assets, S_1 and S_2 , each follow Black/Scholes dynamics of the type

$$dS_i(t) = S_i(t) \left(rdt + \begin{pmatrix} \sigma_{i1} \\ \sigma_{i2} \end{pmatrix} dW(t) \right)$$

with W(t) a two-dimensional Wiener process (i.e. two-dimensional Brownian motion). Show how an option to exchange K units of S_1 for one unit of S_2 can be priced in a one-dimensional finite difference scheme of the types discussed in this chapter.